# InfoCoBuild

## Introduction to Classical Mechanics

Introduction to Classical Mechanics. Instructor: Prof. Anurag Tripathi, Department of Physics, IIT Hyderabad. This is an introductory course on Classical Mechanics covering topics: Generalised coordinates, d'Alembert's Principle, Euler Lagrange equation of motion and its applications; Hamilton's Principle. Conservation laws; Small oscillations: Free Oscillations, Damped oscillations; Forced Oscillations, Resonance, Normal Coordinates; Central force problem, reduction to 1 body problem, Equation of motion and first integrals (from nptel.ac.in)

 Introduction

 Lecture 01 - Introduction, Symmetries of Space and Time Lecture 02 - Generalized Coordinates and Degrees of Freedom Lecture 03 - Virtual Work Lecture 04 - Virtual Work (Rigid Body) Lecture 05 - d'Alembert Principle Lecture 06 - Euler Lagrange Equation for a Holonomic System Lecture 07 - Euler Lagrange Equations: Examples Lecture 08 - Euler Lagrange Equations: Examples (cont.) Lecture 09 - Properties of Lagrangian Lecture 10 - Kinetic Term in Generalized Coordinates Lecture 11 - Cyclic Coordinates Lecture 12 - Conservation Laws - Conservation of Energy Lecture 13 - Energy Function, Jacobi's Integral Lecture 14 - Momentum Conservation Lecture 15 - Matrices and All That Lecture 16 - Matrices, Forms, and All That Lecture 17 - Principal Axis Transformation Lecture 18 - Small Oscillations Lecture 19 - Oscillations, Normal Coordinates Lecture 20 - Oscillations, Triatomic Molecule Lecture 21 - Triatomic Molecule Normal Coordinates Lecture 22 - Coupled Pendulums, Normal Modes Lecture 23 - Coupled Pendulums, Beats Lecture 24 - Oscillations, General Solution Lecture 25 - Forced Oscillations Lecture 26 - Damped Oscillations Lecture 27 - Forced Damped Oscillations Lecture 28 - One Dimensional Systems Lecture 29 - Two-body Problem Lecture 30 - Two-body Problem: Kepler's Second Law Lecture 31 - Two-body Problem: Kepler's Problem Lecture 32 - Two-body Problem: Conic Sections in Polar Coordinates Lecture 33 - Two-body Problem: Ellipse in Polar Coordinates Lecture 34 - Orbits in Kepler Problem Lecture 35 - Apsidal Distances, Eccentricity of Orbits Lecture 36 - Kepler's Third Law; Laplace-Runge-Lenz Vector Lecture 37 - Rigid Body: Degrees of Freedom Lecture 38 - Rigid Body: Transformation Matrix Lecture 39 - Rigid Body: Euler Angles Lecture 40 - Rigid Body: Parameterization using Euler Angles Lecture 41 - Rigid Body: Euler's Theorem Lecture 42 - General Motion of a Rigid Body Lecture 43 - Moment of Inertia Tensor Lecture 44 - Principal Moments Lecture 45 - Lagrangian of a Rigid Body Lecture 46 - Motion of a Free Symmetric Top Lecture 47 - Angular Velocity using Euler Angles Lecture 48 - Lagrangian of a Heavy Symmetric Top Lecture 49 - First Integrals of a Heavy Symmetric Top Lecture 50 - Nutation and Precision of a Heavy Symmetric Top Lecture 51 - Sleeping Top Lecture 52 - Rotating Frames, Euler Equations Lecture 53 - Calculus of Variations: Functionals Lecture 54 - Method of Lagrange Multipliers Lecture 55 - Calculus of Variations: Condition for Extremum Lecture 56 - Calculus of Variations: Several Variables Lecture 57 - Cartesian Tensors Lecture 58 - Hamiltonian Mechanics: Hamilton's Equations of Motion Lecture 59 - Hamiltonian Mechanics: Liouville's Theorem Lecture 60 - Hamiltonian Mechanics: Poisson Bracket Lecture 61 - Hamiltonian Mechanics: Canonical Coordinates Lecture 62 - Hamiltonian Mechanics: Generating Function of Canonical Transformations Lecture 63 - Hamiltonian Mechanics: Generating Functions of the 4 Kinds Lecture 64 - Examples of Generating Functions Lecture 65 - Harmonic Oscillator (Canonical Transformations) Lecture 66 - Invariance of Poisson Brackets Lecture 67 - Normal Modes of Triatomic Molecule using Mathematica

 References Introduction to Classical Mechanics Instructor: Prof. Anurag Tripathi, Department of Physics, IIT Hyderabad. This is an introductory course on Classical Mechanics covering topics: Euler-Lagrange Equations, Small Oscillations, Central Force Problem, Rigid Body Motion, Hamiltonian Mechanics.