InfoCoBuild

PHYS 201 - Fundamentals of Physics II

Lecture 10 - Ampere's Law. Ampere's Law is used to find the magnetic field generated by currents in highly symmetric geometries like the infinitely long wire and the solenoid. It is shown how magnetism can be used to convert macroscopic mechanical energy to do microscopic electrical work. Lenz's and Faraday's Laws are introduced. The latter says that a changing magnetic field generates a non-conservative electric field.
(from oyc.yale.edu)

Lecture 10 - Ampere's Law

Time Lecture Chapters
[00:00:00] 1. Review of Ampere's Law
[00:08:46] 2. Magnetic Field Generated by Current in a Solenoid
[00:49:54] 3. Lenz's Law
[01:07:07] 4. Faraday's Law

References
PHYS 201: Lecture 10 - Ampere's Law
Instructor: Professor Ramamurti Shankar. Resources: Problem Set 5 and Solutions [pdf]. Transcript [html]. Audio [mp3]. Download Video [mov].

Go to the Course Home or watch other lectures:

Lecture 01 - Electrostatics
Lecture 02 - Electric Fields
Lecture 03 - Gauss's Law I
Lecture 04 - Gauss's Law and Application to Conductors and Insulators
Lecture 05 - The Electric Potential and Conservation of Energy
Lecture 06 - Capacitors
Lecture 07 - Resistance
Lecture 08 - Circuits and Magnetism I
Lecture 09 - Magnetism II
Lecture 10 - Ampere's Law
Lecture 11 - Lenz's and Faraday's Laws
Lecture 12 - LCR Circuits - DC Voltage
Lecture 13 - LCR Circuits - AC Voltage
Lecture 14 - Maxwell's Equations and Electromagnetic Waves I
Lecture 15 - Maxwell's Equations and Electromagnetic Waves II
Lecture 16 - Ray or Geometrical Optics I
Lecture 17 - Ray or Geometrical Optics II
Lecture 18 - Wave Theory of Light
Lecture 19 - Quantum Mechanics I: Key experiments and wave-particle duality
Lecture 20 - Quantum Mechanics II
Lecture 21 - Quantum Mechanics III
Lecture 22 - Quantum Mechanics IV: Measurement theory, states of definite energy
Lecture 23 - Quantum Mechanics V: Particle in a box
Lecture 24 - Quantum Mechanics VI: Time-dependent Schrodinger Equation
Lecture 25 - Quantum Mechanics VII: Summary of postulates and special topics