## 6.262 Discrete Stochastic Processes

6.262 Discrete Stochastic Processes (Spring 2011, MIT OCW). Instructor: Professor Robert Gallager. Discrete stochastic processes are essentially probabilistic systems that evolve in time via random changes occurring at discrete fixed or random intervals. This course aims to help students acquire both the mathematical principles and the intuition necessary to create, analyze, and understand insightful models for a broad range of these processes. The range of areas for which discrete stochastic-process models are useful is constantly expanding, and includes many applications in engineering, physics, biology, operations research and finance.
(from **ocw.mit.edu**)

Lecture 22 - Random Walks and Thresholds |

This lecture covers topics including the Kingman bound for G/G/1, large deviations for hypothesis tests, sequential detection, and tilted random variables and proof of Wald's identity.

Go to **the Course Home** or watch other lectures: