InfoCoBuild

BENG 100 - Frontiers of Biomedical Engineering

Lecture 09 - Biomolecular Engineering: Engineering of Immunity. Professor Saltzman talks about the importance of vaccines, and particularly the role of bioengineering in vaccine development. He first addresses the question of "what is a vaccine" and the role of the immune system. He then describes the biological basis, symptoms, and history of smallpox as a devastating disease worldwide, and how - starting with the work of Edward Jenner - an effective vaccine was systematically developed from cow lesions. Next, methods to deliver vaccine to a wide population are introduced. Finally, Professor Saltzman touches on the possible reemergence of smallpox as weapon for bioterrorism. (from oyc.yale.edu)

Lecture 09 - Biomolecular Engineering: Engineering of Immunity

Time Lecture Chapters
[00:00:00] 1. Introduction
[00:04:42] 2. Vaccine
[00:13:57] 3. Smallpox and History of Early Vaccine Development
[00:29:06] 4. History of Modern Smallpox Vaccinations
[00:41:28] 5. Threat of Bioterrorism and Conclusion

References
Lecture 9 - Biomolecular Engineering: Engineering of Immunity
Instructor: W. Mark Saltzman. Resources: Summary and key concepts: chapter 15 [pdf]. Transcript [html]. Audio [mp3]. Download Video [mov].

Go to the Course Home or watch other lectures:

Lecture 01 - What is Biomedical Engineering?
Lecture 02 - What is Biomedical Engineering? (cont.)
Lecture 03 - Genetic Engineering
Lecture 04 - Genetic Engineering (cont.)
Lecture 05 - Cell Culture Engineering
Lecture 06 - Cell Culture Engineering (cont.)
Lecture 07 - Cell Communication and Immunology
Lecture 08 - Cell Communication and Immunology (cont.)
Lecture 09 - Biomolecular Engineering: Engineering of Immunity
Lecture 10 - Biomolecular Engineering: Engineering of Immunity (cont.)
Lecture 11 - Biomolecular Engineering: General Concepts
Lecture 12 - Biomolecular Engineering: General Concepts (cont.)
Lecture 13 - Cardiovascular Physiology
Lecture 14 - Cardiovascular Physiology (cont.)
Lecture 15 - Cardiovascular Physiology (cont.)
Lecture 16 - Renal Physiology
Lecture 17 - Renal Physiology (cont.)
Lecture 18 - Biomechanics and Orthopedics
Lecture 19 - Biomechanics and Orthopedics (cont.)
Lecture 20 - Bioimaging
Lecture 21 - Bioimaging (cont.)
Lecture 22 - Tissue Engineering
Lecture 23 - Tissue Engineering (cont.)
Lecture 24 - Biomedical Engineers and Cancer
Lecture 25 - Biomedical Engineers and Artificial Organs