InfoCoBuild

BENG 100 - Frontiers of Biomedical Engineering

Lecture 20 - Bioimaging. Professor Saltzman first reviews the electromagnetic spectrum, the different regimes of the spectrum, their respective wavelengths, energies, and ways of detecting them. He then talks about the use of high energy radio waves for imaging of the body. The history, components, advantages and limitations of X-ray imaging are presented in detail. Next, he introduces Computed Tomography, a related imaging technique which uses mathematical computation to compile line-scanned X-rays into a three dimensional image. Finally, Professor Saltzman touches on harmful effects of X-ray radiation, and ways to limit or avoid overexposure in these imaging techniques. (from oyc.yale.edu)

Lecture 20 - Bioimaging

Time Lecture Chapters
[00:00:00] 1. Introduction to Biomedical Imaging
[00:05:28] 2. The Electromagnetic Spectrum
[00:13:29] 3. X-Rays
[00:24:40] 4. Challenges of X-Ray Imaging
[00:30:43] 5. CT Imagery
[00:37:03] 6. Conclusion

References
Lecture 20 - Bioimaging
Instructor: W. Mark Saltzman. Resources: Summary and key concepts: chapter 12 [pdf]. Transcript [html]. Audio [mp3]. Download Video [mov].

Go to the Course Home or watch other lectures:

Lecture 01 - What is Biomedical Engineering?
Lecture 02 - What is Biomedical Engineering? (cont.)
Lecture 03 - Genetic Engineering
Lecture 04 - Genetic Engineering (cont.)
Lecture 05 - Cell Culture Engineering
Lecture 06 - Cell Culture Engineering (cont.)
Lecture 07 - Cell Communication and Immunology
Lecture 08 - Cell Communication and Immunology (cont.)
Lecture 09 - Biomolecular Engineering: Engineering of Immunity
Lecture 10 - Biomolecular Engineering: Engineering of Immunity (cont.)
Lecture 11 - Biomolecular Engineering: General Concepts
Lecture 12 - Biomolecular Engineering: General Concepts (cont.)
Lecture 13 - Cardiovascular Physiology
Lecture 14 - Cardiovascular Physiology (cont.)
Lecture 15 - Cardiovascular Physiology (cont.)
Lecture 16 - Renal Physiology
Lecture 17 - Renal Physiology (cont.)
Lecture 18 - Biomechanics and Orthopedics
Lecture 19 - Biomechanics and Orthopedics (cont.)
Lecture 20 - Bioimaging
Lecture 21 - Bioimaging (cont.)
Lecture 22 - Tissue Engineering
Lecture 23 - Tissue Engineering (cont.)
Lecture 24 - Biomedical Engineers and Cancer
Lecture 25 - Biomedical Engineers and Artificial Organs