## General Relativity

**General Relativity (Fall 2012, Stanford Univ.)**. Instructor: Professor Leonard Susskind. General relativity is the geometric theory of gravitation published by
Albert Einstein in 1916 and the current description of gravitation in modern physics. General relativity generalises special relativity and Newton's law of universal gravitation,
providing a unified description of gravity as a geometric property of space and time, or spacetime. In particular, the curvature of spacetime is directly related to
the energy and momentum of whatever matter and radiation are present. This course uses the physics of black holes extensively to develop and illustrate the concepts of
general relativity and curved spacetime.
(from **theoreticalminimum.com**)

Lecture 01 - The equivalence principle and tensor analysisA broad introduction to general relativity, The equivalence principle, Accelerated reference frames, Curvilinear coordinate transformations, Tensor analysis. |

Lecture 02 - Tensor mathematicsReview the geometries of flat and curved spaces, Metric tensor, Tensor analysis, Tensor mathematics: addition, multiplication, contraction. |

Lecture 03 - Flatness and curvatureRiemannian geometry, Metric tensor, Gaussian normal coordinates, Covariant derivatives, Christoffel symbols, Curvature tensor. |

Lecture 04 - Geodesics and gravityParallel transport, Tangent vectors, Geodesics, Spacetime, Special relativity, Uniform acceleration, Uniform gravitational fields. |

Lecture 05 - Metric for a gravitational fieldThe metric for a gravitational field, Space-like, time-like, and light-like intervals, Light cone, Black holes, Schwarzschild metric, Event horizon. |

Lecture 06 - Black holesSchwarzschild metric, Schwarzschild Radius, Black hole event horizon, Light ray orbiting a black hole, Photon sphere, Hyperbolic coordinates, Black hole singularity. |

Lecture 07 - Falling in to a black holeThe in-depth discussion of the physics of black holes, Schwarzschild metric, Event horizon, Singularity. |

Lecture 08 - Formation of a black holeKruskal-Szekeres coordinates, Penrose diagrams, Wormholes, Formation of a black hole, Newton's shell theorem. |

Lecture 09 - Einstein field equationsNewtonian gravitational field, Continuity equation, The energy-momentum tensor, Curvature scalar, Ricci tensor, Einstein tensor, Einstein field equations. |

Lecture 10 - Gravity wavesWeak gravitational fields, Gravitational radiation, Gravity waves, Einstein-Hilbert action for general relativity. |

References |

General Relativity (Fall, 2012) | The Theoretical MinimumGeneral relativity is the geometric theory of gravitation published by Albert Einstein in 1916 and the current description of gravitation in modern physics. |