InfoCoBuild

CHEM 125A - Freshman Organic Chemistry I

Lecture 37 - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism. After discussing the statistical basis of the law of mass action, the lecture turns to developing a framework for understanding reaction rates. A potential energy surface that associates energy with polyatomic geometry can be realized physically for a linear, triatomic system, but it is more practical to use collective energies for starting material, transition state, and product, together with Eyring theory, to predict rates. Free-radical chain halogenation provides examples of predicting reaction equilibria and rates from bond dissociation energies. The lecture concludes with a summary of the semester's topics from the perspective of physical-organic chemistry. (from oyc.yale.edu)

Lecture 37 - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism

Time Lecture Chapters
[00:00:00] 1. The Boltzmann Factor and Entropy Against Traditional Views on Society
[00:07:41] 2. The Statistical Basis of the Law of Mass Action
[00:13:13] 3. Understanding Reaction Rates: The Potential Energy Surface and Collective Energies
[00:29:40] 4. Free Radical Halogenations: Predicting Reaction Equilibria and Rates
[00:43:01] 5. A Summary of the First Semester

References
Lecture 37 - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism
Instructor: Professor J. Michael McBride. Resources: Professor McBride's website resource for CHEM 125 (Fall 2008). Transcript [html]. Audio [mp3]. Download Video [mov].

Go to the Course Home or watch other lectures:

Lecture 01 - How do You Know?
Lecture 02 - Force Laws, Lewis Structures and Resonance
Lecture 03 - Double Minima, Earnshaw's Theorem, and Plum-Puddings
Lecture 04 - Coping with Smallness and Scanning Probe Microscopy
Lecture 05 - X-Ray Diffraction
Lecture 06 - Seeing Bonds by Electron Difference Density
Lecture 07 - Quantum Mechanical Kinetic Energy
Lecture 08 - One-Dimensional Wave Functions
Lecture 09 - Chladni Figures and One Electron Atoms
Lecture 10 - Reality and the Orbital Approximation
Lecture 11 - Orbital Correction and Plum-Pudding Molecules
Lecture 12 - Overlap and Atom-Pair Bonds
Lecture 13 - Overlap and Energy-Match
Lecture 14 - Checking Hybridization Theory with XH3
Lecture 15 - Chemical Reactivity: SOMO, HOMO, and LUMO
Lecture 16 - Recognizing Functional Groups
Lecture 17 - Reaction Analogies and Carbonyl Reactivity
Lecture 18 - Amide, Carboxylic Acid and Alkyl Lithium
Lecture 19 - Oxygen and the Chemical Revolution (Beginning to 1789)
Lecture 20 - Rise of the Atomic Theory (1790-1805)
Lecture 21 - Berzelius to Liebig and Wohler (1805-1832)
Lecture 22 - Radical and Type Theories (1832-1850)
Lecture 23 - Valence Theory and Constitutional Structure (1858)
Lecture 24 - Determining Chemical Structure by Isomer Counting (1869)
Lecture 25 - Models in 3D Space (1869-1877); Optical Isomers
Lecture 26 - Van't Hoff's Tetrahedral Carbon and Chirality
Lecture 27 - Communicating Molecular Structure in Diagrams and Words
Lecture 28 - Stereochemical Nomenclature; Racemization and Resolution
Lecture 29 - Preparing Single Enantiomers and the Mechanism of Optical Rotation
Lecture 30 - Esomeprazole as an Example of Drug Testing and Usage
Lecture 31 - Preparing Single Enantiomers and Conformational Energy
Lecture 32 - Stereotopicity and Baeyer Strain Theory
Lecture 33 - Conformational Energy and Molecular Mechanics
Lecture 34 - Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes
Lecture 35 - Understanding Molecular Structure and Energy Through Standard Bonds
Lecture 36 - Bond Energies, the Boltzmann Factor and Entropy
Lecture 37 - Potential Energy Surfaces, Transition State Theory and Reaction Mechanism