## 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

**6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Fall 2012, MIT OCW)**. Instructor: Professor Erik Demaine. This course focuses on the algorithms for analyzing and designing geometric foldings.
Topics include reconfiguration of foldable structures, linkages made from one-dimensional rods connected by hinges, folding two-dimensional paper (origami), and unfolding and folding three-dimensional polyhedra.
Applications to architecture, robotics, manufacturing, and biology are also covered in this course.
(from **ocw.mit.edu**)

Lecture 04 - Efficient Origami Design |

This lecture continues to discuss the tree method and characterizing a uniaxial base. Another algorithm, Origamizer, is presented with introductory examples of folding a cube, checkerboard, and arbitrary polyhedra.

Class 04 - Efficient Origami Design |

This lecture begins with folded examples produced by TreeMaker and Origamizer. Explanation of the triangulation algorithm, checkerboard folding, the Lang Universal Molecule, and Origamizer tucking molecules are offered.

Go to **the Course Home** or watch other lectures: