## 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

**6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Fall 2012, MIT OCW)**. Instructor: Professor Erik Demaine. This course focuses on the algorithms for analyzing and designing geometric foldings.
Topics include reconfiguration of foldable structures, linkages made from one-dimensional rods connected by hinges, folding two-dimensional paper (origami), and unfolding and folding three-dimensional polyhedra.
Applications to architecture, robotics, manufacturing, and biology are also covered in this course.
(from **ocw.mit.edu**)

Lecture 11 - Rigidity Theory |

This lecture begins with a review of linkages and classifying graphs as generically rigid or flexible. Conditions for minimally generic rigid graphs are presented with degree-of-freedom analysis. Proofs of Henneberg and Laman characterizations are given.

Class 11 - Generic Rigidity |

This class covers how the pebble algorithm works with first a proof of the 2k property, and then 2k-3. Generic rigidity and the running time of the algorithm is discussed, and software simulations running the algorithm are shown.

Go to **the Course Home** or watch other lectures: