## 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

**6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Fall 2012, MIT OCW)**. Instructor: Professor Erik Demaine. This course focuses on the algorithms for analyzing and designing geometric foldings.
Topics include reconfiguration of foldable structures, linkages made from one-dimensional rods connected by hinges, folding two-dimensional paper (origami), and unfolding and folding three-dimensional polyhedra.
Applications to architecture, robotics, manufacturing, and biology are also covered in this course.
(from **ocw.mit.edu**)

Lecture 16 - Vertex & Orthogonal Unfolding |

This lecture continues with open problems involving general unfoldings of polyhedra and proof of vertex unfolding using construction of facet-paths. Approaches for unfolding orthogonal polyhedra, grid unfolding, and folding convex polyhedra are presented.

Class 16 - Vertex & Orthogonal Unfolding |

This class reviews covers topologically convex vertex-unfoldable cases and unfolding for orthogonal polyhedra, including the approach of heavy-light decomposition. The class also reviews Cauchy's Rigidity Theorem.

Go to **the Course Home** or watch other lectures: