## 6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra

**6.849 Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Fall 2012, MIT OCW)**. Instructor: Professor Erik Demaine. This course focuses on the algorithms for analyzing and designing geometric foldings.
Topics include reconfiguration of foldable structures, linkages made from one-dimensional rods connected by hinges, folding two-dimensional paper (origami), and unfolding and folding three-dimensional polyhedra.
Applications to architecture, robotics, manufacturing, and biology are also covered in this course.
(from **ocw.mit.edu**)

Lecture 08 - Fold & One Cut |

This lecture presents the fold and cut problem, and both the straight skeleton method and disk-packing method. Simple fold and cut is then generalized for folding surface of polyhedra.

Class 08 - Fold & One Cut |

This lecture begins with a demonstration of software for fold and cut. Odd-degree vertices, and a comparison of skeleton method and tree method are discussed. Clarifications on the disk-packing method with a definition for the number of disks are given.

Go to **the Course Home** or watch other lectures: